beta2-adrenergic cAMP signaling is uncoupled from phosphorylation of cytoplasmic proteins in canine heart.
نویسندگان
چکیده
BACKGROUND Recent studies of beta-adrenergic receptor (beta-AR) subtype signaling in in vitro preparations have raised doubts as to whether the cAMP/protein kinase A (PKA) signaling is activated in the same manner in response to beta2-AR versus beta1-AR stimulation. METHODS AND RESULTS The present study compared, in the intact dog, the magnitude and characteristics of chronotropic, inotropic, and lusitropic effects of cAMP accumulation, PKA activation, and PKA-dependent phosphorylation of key effector proteins in response to beta-AR subtype stimulation. In addition, many of these parameters and L-type Ca2+ current (ICa) were also measured in single canine ventricular myocytes. The results indicate that although the cAMP/PKA-dependent phosphorylation cascade activated by beta1-AR stimulation could explain the resultant modulation of cardiac function, substantial beta2-AR-mediated chronotropic, inotropic, and lusitropic responses occurred in the absence of PKA activation and phosphorylation of nonsarcolemmal proteins, including phospholamban, troponin I, C protein, and glycogen phosphorylase kinase. However, in single canine myocytes, we found that beta2-AR-stimulated increases in both ICa and contraction were abolished by PKA inhibition. Thus, the beta2-AR-directed cAMP/PKA signaling modulates sarcolemmal L-type Ca2+ channels but does not regulate PKA-dependent phosphorylation of cytoplasmic proteins. CONCLUSIONS These results indicate that the dissociation of beta2-AR signaling from cAMP regulatory systems is only apparent and that beta2-AR-stimulated cAMP/PKA signaling is uncoupled from phosphorylation of nonsarcolemmal regulatory proteins involved in excitation-contraction coupling.
منابع مشابه
b2-Adrenergic cAMP Signaling Is Uncoupled From Phosphorylation of Cytoplasmic Proteins in Canine Heart
Background—Recent studies of b-adrenergic receptor (b-AR) subtype signaling in in vitro preparations have raised doubts as to whether the cAMP/protein kinase A (PKA) signaling is activated in the same manner in response to b2-AR versus b1-AR stimulation. Methods and Results—The present study compared, in the intact dog, the magnitude and characteristics of chronotropic, inotropic, and lusitropi...
متن کاملPhosphatidylinositol 3-kinase offsets cAMP-mediated positive inotropic effect via inhibiting Ca2+ influx in cardiomyocytes.
Phosphoinositide 3-kinase (PI3K) has been implicated in beta2-adrenergic receptor (beta2-AR)/G(i)-mediated compartmentation of the concurrent G(s)-cAMP signaling, negating beta2-AR-induced phospholamban phosphorylation and the positive inotropic and lusitropic responses in cardiomyocytes. However, it is unclear whether PI3K crosstalks with the beta1-AR signal transduction, and even more general...
متن کاملA unique mechanism of -blocker action: Carvedilol stimulates -arrestin signaling
For many years, -adrenergic receptor antagonists ( -blockers or AR antagonists) have provided significant morbidity and mortality benefits in patients who have sustained acute myocardial infarction. More recently, -adrenergic receptor antagonists have been found to provide survival benefits in patients suffering from heart failure, although the efficacy of different -blockers varies widely in t...
متن کاملSystems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes.
Compartmentation and dynamics of cAMP and PKA signaling are important determinants of specificity among cAMP's myriad cellular roles. Both cardiac inotropy and the progression of heart disease are affected by spatiotemporal variations in cAMP/PKA signaling, yet the dynamic patterns of PKA-mediated phosphorylation that influence differential responses to agonists have not been characterized. We ...
متن کاملYeast Ste2 receptors as tools for study of mammalian protein kinases and adaptors involved in receptor trafficking
BACKGROUND Mammalian receptors that couple to effectors via heterotrimeric G proteins (e.g., beta 2-adrenergic receptors) and receptors with intrinsic tyrosine kinase activity (e.g., insulin and IGF-I receptors) constitute the proximal points of two dominant cell signaling pathways. Receptors coupled to G proteins can be substrates for tyrosine kinases, integrating signals from both pathways. Y...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 99 18 شماره
صفحات -
تاریخ انتشار 1999